Cara Uji Normalitas Kolmogorov-Smirnov

Posted by yupyonline 0 comments
Uji Kolmogorov Smirnov merupakan pengujian normalitas yang banyak dipakai, terutama setelah adanya banyak program statistik yang beredar. Kelebihan dari uji ini adalah sederhana dan tidak menimbulkan perbedaan persepsi di antara satu pengamat dengan pengamat yang lain, yang sering terjadi pada uji normalitas dengan menggunakan grafik.

Konsep dasar dari uji normalitas Kolmogorov Smirnov adalah dengan membandingkan distribusi data (yang akan diuji normalitasnya) dengan distribusi normal baku. Distribusi normal baku adalah data yang telah ditransformasikan ke dalam bentuk Z-Score dan diasumsikan normal. Jadi sebenarnya uji Kolmogorov Smirnov adalah uji beda antara data yang diuji normalitasnya dengan data normal baku. Seperti pada uji beda biasa, jika signifikansi di bawah 0,05 berarti terdapat perbedaan yang signifikan, dan jika signifikansi di atas 0,05 maka tidak terjadi perbedaan yang signifikan. Penerapan pada uji Kolmogorov Smirnov adalah bahwa jika signifikansi di bawah 0,05 berarti data yang akan diuji mempunyai perbedaan yang signifikan dengan data normal baku, berarti data tersebut tidak normal.
Lebih lanjut, jika signifikansi di atas 0,05 maka berarti tidak terdapat perbedaan yang signifikan antara data yang akan diuji dengan data normal baku, artinya….ya berarti data yang kita uji normal, kan tidak berbeda dengan normal baku.
Jika kesimpulan kita memberikan hasil yang tidak normal, maka kita tidak bisa menentukan transformasi seperti apa yang harus kita gunakan untuk normalisasi. Jadi ya kalau tidak normal, gunakan plot grafik untuk melihat menceng ke kanan atau ke kiri, atau menggunakan Skewness dan Kurtosis sehingga dapat ditentukan transformasi seperti apa yang paling tepat dipergunakan.

Uji Normalitas dengan Kolmogorov Smirnov dengan Program SPSS
Pengujian normalitas dengan menggunakan Program SPSS dilakukan dengan menu Analyze, kemudian klik pada Nonparametric Test, lalu klik pada 1-Sample K-S. K-S itu singkatan dari Kolmogorov-Smirnov. Maka akan muncul kotak One-Sample Kolmogorov-Smirnov Test. Data yang akan diuji terletak di kiri dan pindahkan ke kanan dengan tanda panah. Lalu tekan OK saja. Pada output, lihat pada baris paling bawah dan paling kanan yang berisi Asymp.Sig.(2-tailed). Lalu intepretasinya adalah bahwa jika nilainya di atas 0,05 maka distribusi data dinyatakan memenuhi asumsi normalitas, dan jika nilainya di bawah 0,05 maka diinterpretasikan sebagai tidak normal.
Comments
0 Comments

0 comments:

Poskan Komentar